nnamma@sina.com

手把手教你如何用好AD797

nnamma@sina.com 在 2015-7-2 建立的討論區
最後回覆由nnamma@sina.com於2015-7-2提供

AD797作为一款低噪声高速运算放大器,其性能指标堪称完美。该运放内部采用Flold-Cascode结构,以及高偏流设计,噪声低至0.9VHZ,增益带宽积高达110M。此外,该芯片在20KHz时的THD指标可达到-120dB,0.0001%的水平,在同类芯片中也是非常出色的;该芯片的电流驱动能力也达到了50mA的水平。在种类繁多的运算放大器里,AD797应该当之无愧的被称作运算放大器的王者。

 

Hi-fi爱好者总是希望通过摩机来提升机器的性能。更换运放为更高规格的制品,无疑是最简单和最方便的方式。可是大多数爱好者在用AD797进行“摩机”时,似乎并没有取得最佳的效果,出现了很多状况,例如:输出产生自激震荡...中点电压偏离正常值较多...声音不自然...遇到了这些状况,使得很多朋友对该款运放产生了怀疑,甚至认为自己买到了假货。

 

   其实,遇到这些情况,大多是对该运放特性不了解导致的。只有深入了解了AD797这款运放,才会在应用中,充分发挥出这款运放的优势出来。而这一点,正是很多通用的教科书上找不到的。

 

    下面,就针对如何用好这款运放进行详细的阐述。


     一、电路噪声

   很多有经验的DIY发烧友都提到,AD797对输入电阻要求比较高 。其实这不是什么特殊的地方,有这么一大类运算放大器和AD797一样,都是属于对输入电阻要求比较高的类型…

 

    是什么原因造成这样的状况呢?我们在设计时应如何把握和取舍?这要从运算放大器的总输入噪声电压密度谈起。

 

    运算放大器的总输入噪声电压是运算放大器的噪声电压、噪声电流流经输入电阻上产生的噪声电压、以及输入电阻本身的热噪声三者之和。这一点,是我们在很多场合,选择不同类型的运算放大器的一个依据。如果将这些以单位频宽来衡量,就变换成了总输入噪声电压密度和噪声电压密度、噪声电流密度、电阻热噪声三者的关系了。下面,我们再深入探讨一下。

 

先谈一下输入噪声电压密度。运算放大器输入噪声电压密度是和其内部输入级差动晶体管的集电极电流相关的。大致关系如下:

QQ图片20150702150329.png

针对运算放大器电路而言,总的噪声电压密度可以表示为:

QQ图片20150702150443.png

也就是说,运算放大器总的噪声电压密度等于电压噪声密度、同相和反相端的电流噪声密度在输入电阻上产生的电压噪声密度、同相和反相端的输入电阻本身的热噪声电压密度三者之和。

 

   经过以上分析,其实不难得出结论,那就是:每款运放都有适合自己的一个工作点范围,在这个范围内工作,运放的噪声是可控的,超出这个范围,噪声特性会恶化。

 

   下面,我们理论联系实践,分析一下如何更好的应用好AD797这款运放。场景如下:

 

场景1:前级放大器的放大电路,应选择哪款运放,电路参数应如何确定?

    这个问题看似宽泛,可能有的朋友会想,不管哪一款运放,只要能工作在最佳状态,效果都不会太差。这个想法看似正确,但放到特定场景下,就不一定正确了。假定这个前级放大电路是有10dB3倍)增益的电路,电路由一级运放组成…

 

    首先,考虑线路增益。反相输入时,电路增益等于反馈电阻除以反相端输入电阻。这里需要特别注意的是,这个反相端输入电阻里面是包含信号源内阻,也就是音源的输出电阻的!由于配搭音源的内阻的不确定性,将导致线路的增益不确定!

 

我们再看一下同相输入的情况。此时,电路增益由反相端对地电阻和反馈电阻决定。增益问题不存在了。但我们仍然考虑信号源内阻。假设信号源内阻为2K欧姆,AD797的同相、反相端输入电阻均为1000欧姆,此时,总的输入电阻为3.5K欧姆,这时若采用AD797为输入放大,系统的总的噪声电压系数为:

QQ图片20150702150527.png

这一级电路,如果采用AD797,可能会因为输入信号阻抗变化过大导致本级电路性能的不确定,噪声随音量变化较大。

 

     二、输出失调电压

    我们再回到上面这个场景。此时,我们不考虑噪声问题,而去考虑另外一个因素:输出失调电压(也就是我们常说的中点电压)。

 

    谈到这个问题,我们需要关注三个指标:输入失调电压、输入失调电流和输入偏置电流。

 

    输入失调电压是指在常温下,运算放大器输入口短路接地时,输出端的失调电压折合到输入端口的电压值。

 

    输入失调电流是指当运放输入端口开路时,为了得到0输出,必须加到运放两个输入端的补偿电流。

 

    输入偏置电流是指当常温下,输入信号为00输出时,两个输入端的偏置电流。

 

    如果我们在前级放大器设计时仍然考虑信号源内阻。假设信号源内阻为2K欧姆,AD797的同相、反相端输入电阻均为1000欧姆,前级放大器增益为3倍(10dB),我们试计算一下AD797的输出失调电压。

 

AD797规格书可知,AD797的输入失调电压为25uV,输入失调电流为100nA,输入偏置电流为0.25uA。输出失调电压的计算方法为:

QQ图片20150702150605.png



三、补偿电容和稳定性

  AD797属于全增益范围内稳定的品种。对于运算放大器而言,单位增益是最不容易稳定的。全增益范围稳定意味着在运算放大器用做缓冲器时,我们不需要额外进行补偿就可以稳定工作。

 

  但即便是单位增益的buffer电路, AD797在这样的电路之下就存在一些稳定性问题,而需要采用指定电路解决该稳定性问题。

QQ图片20150702150645.png

AD797片内有一个失真消除电路,通过6脚和8脚之间的电容实现内部高频失真的消除。这里需要注意两点:首先,这个电容的容量是需要精确等于50pF的,容量误差越大,失真消除效果越不明显。其次,这个电容仅对高频段和高增益应用场景(例如增益为1000倍)适用。实际上,50pF电容难觅,可以考虑数个高精度电容并联实现。

 

    实际应用上,AD797输出如果接感性负载(如驱动耳机),也会引发震荡。这一点需要格外重视。

选择运算放大器时,要特别关注运放是否可以在单位增益稳定。一些运放是不能再单位增益下稳定的,此时用于缓冲器电路就会出现稳定性问题。

 

     四、发挥AD797的特性

    前面论述过,AD797不适合用做高输入电阻的缓冲、放大级。但是毕竟它是一款性能非常优异的运放,运用得当,就可以获得非常优异的性能。

 

    例如,AD797用于阻抗变换Buffer之后的主电压放大级。

 

    仍以3倍增益为例。如果信号源内阻可以忽略,运放同相端、反相端电阻均为100欧姆,反馈电阻200欧姆,计算总噪声电压密度、输出失调电压如下(计算过程略):

 

总噪声电压密度为2.2(nV/Hz )

输出失调电压为95(uV)

 

    这个特性是相当优越的。也是其它型号的运算放大器基本无法达到的。这时,其它型号的运算放大器可能会因为反馈电阻和输入电阻阻值过低,超出了运放的电流输出能力而不能很好的工作, AD797的性能就被充分发挥出来了。

 

  综上所述,发挥AD797性能的要点在于:确定的低信号源内阻,较低的输入电阻值,以及同相、反相输入端电阻值匹配。

 

     五、摩机时需要注意的问题

     通过以上分析可以看出,在摩机替换运放时,并不是简单的更换,而是需要对应用场景进行研究的。原则上讲,OPA627这类JFET输入级的单位增益稳定的运放,可以比较方便的替换其它通用运放,而在性能上不会引发大的偏差。如果和AD797之间相互替代,就会牵涉到场景和外围电阻等的修改了,而不能简单直接替换,否则效果会大打折扣的。

結果